Umělá inteligence |
Úvod |
Vícerozměrné metody pro analýzu a klasifikaci dat |
Statistické modelování |
Teorie a praxe jádrového vyhlazování |
Regresní modelování |
Statistické hodnocení biodiverzity |
Výstupy z výukové jednotky |
Umělá inteligence |
Posouzení inteligence strojového algoritmu |
Literatura |
Expertní systémy |
Výstupy z výukové jednotky |
Expertní systém (ES) |
Komponenty expertních systémů |
Pravidlové expertní systémy |
Nepravidlové expertní systémy |
Neurčitost v ES |
Literatura |
Prohledávání stavového prostoru |
Výstupy z výukové jednotky |
Úvod |
Definice stavového prostoru |
Metody prohledávání |
Neuronové sítě - jednotlivý neuron |
Hodnocení metod |
Neinformované prohledávání |
Literatura |
Metoda prohledávání do šířky |
Metoda prohledávání do hloubky |
Metoda prohledávání do hloubky s omezenou hloubkou prohledávání |
Metoda prohledávání do hloubky s postupným prohlubováním |
Metoda prohledávání podle ceny |
Souhrn neinformovaných metod |
Informované heuristické prohledávání |
Lokální metody prohledávání |
Výstupy z výukové jednotky |
Úvod do neuronových sítí |
Jednotlivý neuron |
Adaptační dynamika neuronu |
Neuronové sítě - Perceptrony |
Principy učení neuronu obecně |
Učení bez učitele |
Učení s učitelem |
Hebbovo učení |
Delta pravidlo |
Učení neuronu podle Widrowa |
Klasifikační schopnosti jednotlivého neuronu |
Realizace logické funkce AND |
Realizace logických funkcí OR a NOT |
Realizace logické funkce XOR |
Souhrn klasifikačních schopností jednotlivého neuronu |
Literatura |
Výstupy z výukové jednotky |
Dopředné neuronové sítě |
Jednovrstvý perceptron |
Vícevrstvý perceptron |
Sítě se vzájemnými vazbami |
Organizační a aktivní dynamika |
Ilustrace klasifikačních možnosti vícevrstvého perceptronu |
Klasifikační možnosti vícevrstvého perceptronu - Kolmogorova věta |
Adaptační dynamika |
Algoritmus zpětného šíření chyby (BP algoritmus) |
Minimalizace chybové funkce adaptačním algoritmem |
Vícevrstvý perceptron a syndrom přeučení |
Literatura |
Výstupy z výukové jednotky |
Obecná charakteristika umělých neuronových sítí se vzájemnými vazbami |
Hopfieldova síť |
Boltzmannův stroj |
Obousměrná asociativní paměť |
Literatura |
Soutěživé sítě |
Výstupy z výukové jednotky |
Jednoduchá soutěživá síť MAXNET |
Hammingova síť |
Samoorganizující se mapy |
Úvod do genetických algoritmů (GA) |
Kohonenova samoorganizační mapa –učení s učitelem |
Jednoduchá samoorganizační mapa |
Adaptační dynamika jednoduché samoorganizační mapy |
Kohonenova samoorganizační mapa |
Kohonenova samoorganizační mapa – adaptační dynamika |
Literatura |
Výstupy z výukové jednotky |
Základní pojmy genetických algoritmů |
Podklady pro výuku |
Mutace |
Základní pojmy |
Operátor selekce |
Úlohy GA |
Literatura |
Seřazovací metoda |
Ruletová selekce |
Selekce lineárním a exponenciálním výběrem |
Boltzmanův výběr |
Další typy selekce |
Křížení |
Adaptační dynamika
Předpokládejme bipolární realizaci neuronů, tedy neuronů s výstupy Nastavení vah sítě je realizováno na základě trénovací množiny, která je představována dvojicemi souvisejících párů vektorů a Maximální počet párů asociací, které si je schopna síť zapamatovat je
(18) |
Váhy lze nastavit dle vztahu
(19) |
který lze upravit na maticový zápis
(20) |
Celá konfigurace sítě je tedy reprezentována maticí vah
Předpokládejme, že máme trénovací množinu složenou ze dvou párů.
Matici vah spočteme dle vztahu Sítě se vzájemnými vazbami (20) a dostaneme výslednou matici vah.