Slovník | Vyhledávání | Mapa webu
 
Analýza a hodnocení biologických datStatistické modelování Zobecněné lineární modely Ověřování vhodnosti modelu Minimální, maximální model a submodely

Logo Matematická biologie

Minimální, maximální model a submodely

Určení vhodné modelové rovnice je základem všech regresních modelů. Jedním z důležitých principů regresních modelů je zásada jednoduchosti, která znamená, že jednodušší model poměrně dobře popisující zkoumaná data dostane přednost před složitějším modelem, který data popisuje téměř dokonale.

Často musíme vzít také v úvahu současně se základním zobecněným lineárním modelem i několik z něj vyplývajících dílčích modelů, kterým se říká submodely.

Definujme nejprve důležité pojmy

Definice 6.1. Maximální GLM, který označíme splňuje následující podmínky

(1) Maximální model je zobecněný lineární model se stejným typem rozdělení jako zkoumaný model.
(2)
Maximální model a zkoumaný mají stejnou linkovací funkci.
(3) Počet parametrů maximálního modelu je roven počtu vysvětlovaných veličin maximálně věrohodný odhad parametru je -rozměrný vektor

Poznámka 6.2. Z definice plyne, že vysvětlovaná veličina je maximálním modelem určena s nulovým reziduem, tj. odhadnutá hodnota

Definice 6.3. Minimální GLM, který označíme  splňuje následující podmínky

(1) Minimální model je zobecněný lineární model se stejným typem rozdělení jako zkoumaný  model.
(2)
Minimální model a zkoumaný mají stejnou linkovací funkci.
(3) Počet parametrů minimálního modelu je roven  maximálně věrohodný odhad parametru  je skalár 

Poznámka 6.4. Pro minimální model, kde lze snadno ověřit, že

Maximální model tedy slouží jako ukazatel „nejlepší“ regrese a minimální model naopak jako ukazatel „nejhorší“ regrese při daném rozdělení a dané linkovací funkci. Zkoumaný model se bude nacházet někde mezi těmito extrémy a ve srovnání s nimi budeme oceňovat  vhodnost modelu.

Definice 6.5. Mějme zobecněný lineární model s maticí plánu a vektorem neznámých parametrů  Submodel, který označíme  splňuje následující podmínky

(1) Submodel je zobecněný lineární model se stejným typem rozdělení jako zkoumaný  model.
(2)
Submodel a zkoumaný mají stejnou linkovací funkci.
(3)

Vektor neznámých parametrů a matice plánu pro kterou platí

Aby  byl submodelem modelu musí každý sloupec matice patřit do obalu sloupců matice To bude splněno právě tehdy, bude-li typu

Je třeba si uvědomit, že   je speciálním případem modelu Platí-li tudíž pro náhodný výběr  model  platí pro  také model

Model  vybíráme tak bohatý, abychom si mohli být jisti, že popisuje dobře chování  Následně bychom ovšem chtěli vědět, zda lze použít jednodušší model $ Můžeme usuzovat takto, platí-li  pak rozšíření na nepřinese podstatné změny a vektory a by se neměly podstatně lišit. Na druhé straně, budou-li a příliš odlišné, svědčí to proti možnosti redukce  na 

 
vytvořil Institut biostatistiky a analýz Masarykovy univerzity | | zpětné odkazy | validní XHTML 1.0 Strict