Slovník | Vyhledávání | Mapa webu
 
Analýza a modelování dynamických biologických datSpojité deterministické modely I Lotkovy-Volterrovy systémy Obecné vlastnosti Lotkových-Volterrových systémů Grossbergovy systémy

Logo Matematická biologie

Grossbergovy systémy (zobecněné Lotkovy-Volterrovy systémy)

Vlivy populací tvořících společenstvo na růst jednotlivých populací nemusí být tvaru přímé úměrnosti. Proto může být realističtější místo systému Lotkovy-Volterrovy systémy (1) uvažovat systém

(8)

Funkce jsou definovány a spojité na intervalu a splňují podmínky:

  • je-li velikost -té populace nulová (tj. -tá populace ve společenstvu není), pak nulovou zůstane; uvažujeme tedy izolovaná společenstva, kde nedochází k imigraci nových druhů,
  • skutečnost, zda je -tá populace soběstačná nebo ne, nezávisí na její velikosti; neuvažujeme tedy např. Alleeho efekt, 
  • není-li -tá populace ve společenstvu přítomná, nijak neovlivňuje růst ostatních populací,
  • je rostoucí s rostoucí velikostí populace roste i její vliv na růst populací ostatních.

Systém Lotkovy-Volterrovy systémy (8) lze zapsat vektorově:

kde

Poněvadž všechny složky zobrazení jsou rostoucí (tedy prosté) funkce, je toto zobrazení prosté a existuje k němu zobrazení inverzní Je-li matice interakcí společenstva regulární, existuje nejvýše jeden vnitřní stacionární bod

systému Lotkovy-Volterrovy systémy (8), tj. takový bod, že který lze opět interpretovat jako dynamicky stálé velikosti všech populací koexistujících ve společenstvu.

Analogicky jako v důkazu věty Lotkovy-Volterrovy systémy 2.3 ověříme, že pokud existuje okolí vnitřního stacionárního bodu a existuje konstantní vektor se všemi složkami kladnými, pro něž je výraz

nezáporný pro každé pak je funkce

ljapunovskou funkcí systému Lotkovy-Volterrovy systémy (8) ve stacionárním bodě  Odtud je vidět, že tvrzení důsledku Lotkovy-Volterrovy systémy 2.4 platí také pro systém Lotkovy-Volterrovy systémy (8).

Příklad. Dissipativita konkurenčních systémů.
Uvažujme společenstvo soběstačných populací, z nichž každá projevuje vnitrodruhovou konkurenci a každá z populací je amenzalistou jiné nebo ji neovlivňuje (zejména tedy každé dvě populace mohou být ve vztahu konkurence). Vývoj takového společenstva lze modelovat systémem Lotkovy-Volterrovy systémy (1) s kladnými parametry a s nezápornými parametry pro S využitím tvrzení poznámky Autonomní systémy 1.14 z kapitoly o autonomních systémech ukážeme,  že takový systém je dissipativní, tedy že všechny složky jeho řešení jsou ohraničené:

Nechť a jsou libovolná. Položme

Pak a pro všechna platí

takže předpoklady třetího tvrzení Autonomní systémy 1.14 z kapitoly Autonomní systémy jsou splněny.

Poněvadž kladná konstanta je libovolně malá, pro každé řešení systému Lotkovy-Volterrovy systémy (1) s existuje takové, že pro všechna je

V dlouhém časovém horizontu populace nepřekračují velikost danou kapacitou prostředí pro populace izolované.

 

Úlohy k procvičení

 
vytvořil Institut biostatistiky a analýz Masarykovy univerzity | | zpětné odkazy | validní XHTML 1.0 Strict