Slovník | Vyhledávání | Mapa webu
 
Analýza a modelování dynamických biologických datSignály a lineární systémy Modely veličin spojitých v čase I 2 Základní unární operace s funkcemi se spojitým časem

Logo Matematická biologie

2 Základní unární operace s funkcemi se spojitým časem

Násobení konstantou

Okamžitá hodnota funkce se zvětší (zmenší) -krát po násobení funkce konstantou. Pro hovoříme o zesílení, pro o zeslabení, resp. útlumu (obr. Modely veličin spojitých v čase I 12).

Obr. 12. Násobení konstantou – A=2

Změna časového měřítka

Po vynásobení hodnot nezávisle proměnné (času) konstantou k dochází k modifikaci časového měřítka – pro hovoříme o časové kompresi, pro o časové expanzi.

Je třeba si uvědomit, že po změně měřítka nabývá funkce v čase t týchž hodnot jako původní funkce v čase pro tedy plyne čas rychleji, pro plyne čas pomaleji (obr. Modely veličin spojitých v čase I 13).

Posunutí v čase

Po přičtení (odečtení) hodnoty od původního času dochází k posunu časového průběhu funkce vlevo (vpravo) na časové ose. Jinými slovy po přičtení hodnoty dochází ke zpoždění funkce, po odečtení se funkce předchází (obr. Modely veličin spojitých v čase I 14).

V čase posunutá funkce nabývá v čase hodnot, kterých nabývá původní funkce v čase Kterým směrem dochází k posunu si lze nejsnáze uvědomit pro čas Aby posunutá funkce nabyla téže hodnoty jako původní v čase pak musí být argument též roven nule. Tedy, přičítáme-li je argument nulový pro odečítáme-li je argument nulový pro

Obr. 13. Změna časového měřítka - a) originál; b) k=2; c) k=2/3
Obr. 14. Posunutí v čase - a) originál x(t); b) funkce x(t-1); c) funkce x(t+1);
Obr. 15. Inverze časové osy - a) originál x(t); b) funkce x(-t); c) funkce x(-t+1)

Inverze časové osy

Inverzi časové osy provedeme změnou znaménka časového argumentu. Má-li současně dojít k časovému posunu, je třeba změnit znaménko i u orientace časového posunu (obr. Modely veličin spojitých v čase I 15).

Příklad 2.1. Průběh funkce zobrazené na obr. Modely veličin spojitých v čase I 15 je definován vztahy

To znamená. že pro vybrané hodnoty nezávisle proměnné nabývá funkce funkčních hodnot dle následující tabulky (i tak jak to odpovídá průběhu na obr. Modely veličin spojitých v čase I  15a):

-2
-1
0
1
2
0
0
5
10
0

Pro vybrané hodnoty nezávisle proměnné nabývá v čase invertovaná funkce následujících hodnot (obr. Modely veličin spojitých v čase I  15b):

-2
-1
0
1
2
2
1
0
-1
-2
0
10
5
0
0

Konečně, pro argument a zvolené hodnoty proměnné nabývá posunutá a v čase invertovaná funkce následující funkční hodnoty (obr. Modely veličin spojitých v čase I  15c):

-2
-1
0
1
2
3
2
1
0
-1
0
0
10
5
0

Příklad 2.2. Jak lze zapsat funkci definovanou vztahem Modely veličin spojitých v čase I  (31) tak, aby její velikost byla počátek nárůstu byl v bodě a konec lineárního nárůstu v bodě ?

Řešení

 

 


1unární operace je taková operace, která má jediný operand

 
vytvořil Institut biostatistiky a analýz Masarykovy univerzity | | zpětné odkazy | validní XHTML 1.0 Strict